domingo, 8 de noviembre de 2009

Administracion de entradas y salidas



















4.1 Dispositivos y Manejadores de Dispositivos



Todos los dispositivos de E/S se pueden agrupar en tres grandes grupos:

Dispositivos de interfaz de usuario. Se llama así a los dispositivos que permiten la comunicación entre los usuarios y la computadora. Dentro de este grupo se incluyen todos los dispositivos que sirven para proporcionar interfaz con el usuario, tanto para entrada (ratón, teclado, etc.) como para salida (impresoras, pantalla, etc.). Existen periféricos menos habituales, pero más sofisticados, tales como un escáner, lectores de huella digital, lectores de cinta magnética, instrumentos musicales digitales (MIDI), etc.

Dispositivos de almacenamiento. Se usan para proporcionar almacenamiento no volátil de datos y memoria. Su función primordial es abastecer de datos y almacenamiento a los programas que se ejecutan en la UCP. Según su capacidad y la inmediatez con que se puede acceder a los datos almacenados en estos dispositivos, se pueden dividir en almacenamiento secundario (discos y disquetes) y terciario (cintas)

Dispositivos de comunicaciones. Permiten conectar a la computadora con otras computadoras a través de una red. Los dos tipos de dispositivos más importantes de esta clase son los módem, para comunicación vía red telefónica, y las tarjetas de interfaz a la red, para conectar la computadora a una red de área local.
El sistema de E/S es la parte del sistema operativo que se ocupa de facilitar el manejo de los dispositivos de E/S ofreciendo una visión lógica simplificada de los mismos que pueda ser usada por otros componentes del sistema operativo (como el sistema de archivos) o incluso por el usuario. Mediante esta visión lógica se ofrece a los usuarios un mecanismo de abstracción que oculta todos los detalles relacionados con los dispositivos físicos, así como del funcionamiento real de los mismos. El sistema operativo debe controlar el funcionamiento de todos los dispositivos de E/S para alcanzar los siguientes objetivos:

Facilitar el manejo de los dispositivos de E/S. Para ello debe ofrecer una interfaz entre los dispositivos y el resto del sistema que sea sencilla y fácil de utilizar.
• Optimizar la E/S del sistema, proporcionando mecanismos de incremento de prestaciones donde sea necesario.
• Proporcionar dispositivos virtuales que permitan conectar cualquier tipo de dispositivo físico sin que sea necesario remodelar el sistema de E/S del sistema operativo.
• Permitir la conexión de dispositivos nuevos de E/S, solventando de forma automática su instalación usando mecanismos del tipo plug&play.
Conexión de un dispositivo de E/S a una computadora En la siguiente figura se muestra el esquema general de conexión de periféricos a una computadora. En el modelo de un periférico se distinguen dos elementos:
• Periféricos o dispositivos de E/S. Elementos que se conectan a la unidad central de proceso a través de las unidades de entrada/salida. Son el componente mecánico que se conecta a la computadora.
• Controladores de dispositivos o unidades de E/S. Se encargan de hacer la transferencia de información entre la memoria principal y los periféricos. Son el componente electrónico a través del cual se conecta el dispositivo de E/S. Tienen una conexión al bus de la computadora y otra para el dispositivo (generalmente mediante cables internos o externos).
Para empezar una operación de E/S, la UCP tiene que escribir sobre los registros anteriores los datos de la operación a través de una dirección de E/S o de memoria asignada únicamente al controlador. Según se haga de una u otra forma, se distingue entre dispositivos conectados por puertos o proyectados en memoria.

Todas las operaciones de entrada/salida (pantalla gráfica, impresoras, ratón, discos, etc.) se realizan usando esas dos instrucciones de lenguaje máquina con los parámetros adecuados. El problema de este tipo de direccionamiento es que exige conocer las direcciones de E/S y programar las instrucciones especiales de E/S, lo que es significativamente distinto del modelo de memoria de la computadora.

Los dispositivos de almacenamiento secundario y terciario manejan la información en unidades de tamaño fijo, denominadas bloques, por lo que a su vez se denominan dispositivos de bloques. Estos bloques se pueden direccionar de manera independiente, lo que permite leer o escribir un bloque con independencia de los demás. Los dispositivos de bloque lo son porque el hardware fuerza la existencia de accesos de un tamaño determinado. Un disco, por ejemplo, se divide en sectores de 512 bytes o de 1 KB, siendo un sector la unidad mínima de transferencia que el controlador del disco puede manejar.

Un controlador de dispositivo (llamado normalmente controlador, o, en inglés, driver) es un programa informático que permite al sistema operativo interactuar con un periférico, haciendo una abstracción del hardware y proporcionando una interfaz -posiblemente estandarizada- para usarlo. Se puede esquematizar como un manual de instrucciones que le indica cómo debe controlar y comunicarse con un dispositivo en particular. Por tanto, es una pieza esencial, sin la cual no se podría usar el hardware.

De cualquier forma, en los últimos años ha existido un esfuerzo importante de estandarización de los dispositivos, lo que permite usar un mismo controlador para dispositivos de distintos fabricantes. Un buen ejemplo lo constituyen los dispositivos SCSI (Srna Il? Computer Svstern interftice), cuyos controladores ofrecen una interfaz común independientemente de que se trate de un disco, una cinta, un CD-ROM, etc. Otro buen ejemplo son los controladores IDE (In tegrated Drive Electronics), que suelen usarse para conectar los discos en todas las computadoras personales.

















En cualquier caso, y sea como sea el controlador, su misión es convertir los datos del formato interno del dispositivo a uno externo que se ofrezca a través de una interfaz de programación bien definida. Los controladores de dispositivo se suelen agrupar en alguna de las siguientes categorías o clases:
• Adaptadores de audio (tarjetas de sonido).
• Dispositivos de comunicación (infrarrojos, módems, etc).
• Dispositivos de visualización; pantallas (displays).
• Teclados.
• Ratón (“mouse” y otros señaladores gráficos).
• Dispositivos multimedia.
• Dispositivos de Red.
• Impresoras.
• Almacenamiento

4.2 Mecanismos Funciones Manejadores Dispositivos

El controlador es el componente más importante desde el punto de vista del sistema operativo, ya que constituye la interfaz del dispositivo con el bus de la computadora y es el componente que se ve desde la UCP. El S. O. generalmente trabaja con el controlador y no con el dispositivo. Los modelos más frecuentes de comunicación entre la cpu y los controladores son: -
• Para la mayoría de las micro y mini computadoras: Modelo de bus del sistema.
• Para la mayoría de los mainframes: Modelo de varios buses y computadoras especializadas en e/s llamadas canales de e/s.

El registro de datos sirve para el intercambio de datos. En él irá el controlador cargando los datos leídos y de él irá extrayendo los datos para su escritura en el periférico. Un bit del registro de estado sirve para indicar que el controlador puede transferir una palabra. En las operaciones de lectura esto significa que ha cargado en el registro de datos un nuevo valor, mientras que en las de escritura significa que necesita un nuevo dato. Otros bits de este registro sirven para que el controlador indique los problemas que ha encontrado en la ejecución de la última operación de E/S.

El registro de control sirve para indicarle al controlador las operaciones que ha de realizar. Los distintos bits de este registro indican distintas acciones que ha de realizar el periférico. Para empezar una operación de E/S, la UCP tiene que escribir sobre los registros anteriores los datos de la operación a través de una dirección de E/S o de memoria asignada únicamente al controlador.

Este modelo vale tanto para los terminales o la pantalla como para los discos. Las características del controlador son muy importantes, ya que definen el aspecto del periférico para el sistema operativo. Atendiendo a las características del hardware de los dispositivos, se pueden observar los siguientes aspectos distintivos:
• Dirección de E/S. En general hay dos modelos de direccionamiento de E/S, los que usan puertos y los que proyectan los registros en memoria.
• Unidad de transferencia. Los dispositivos suelen usar unidades de transferencia de tamaño fijo. Hay dos modelos clásicos de dispositivos: de caracteres y de bloques.
• Interacción computadora-controlador. La computadora tiene que interaccionar con la computadora para realizar las operaciones de E/S y saber cuándo terminan.
Un controlador de dispositivo o unidad de E/S se encarga de controlar uno o más dispositivos del mismo tipo y de intercambiar información entre ellos y la memoria principal o unidad central de proceso de la computadora.

El controlador debe encargarse además de sincronizar la velocidad del procesador con la del periférico y de detectar los posibles errores que se produzcan en el acceso a los periféricos. En el caso de un controlador de disco, éste debe encargarse de convertir un flujo de bits procedente del disco a un bloque de bytes detectando y corrigiendo, si es posible, los errores que se produzcan en esta transferencia.

Hay que recalcar que el controlador al ser una parte crítica del sistema operativo, el fallo de un controlador puede ser más grave que otros errores de software, pudiendo bloquear el ordenador o incluso dañar el hardware. Debido a que el hardware es (necesariamente) indeterminista, encontrar y solucionar un fallo en un controlador es una tarea complicada ya que no sólo hay que monitorizar el programa, sino también el propio dispositivo.

4.3 Estructuras de Datos para Manejo de Dispositivos

Los procesos de usuario emiten peticiones de entrada/salida al sistema operativo. Cuando un proceso solicita una operación de E/S, el sistema operativo prepara dicha operación y bloquea al proceso hasta que se recibe una interrupción del controlador del dispositivo indicando que la operación está completa. Las peticiones se procesan de forma estructurada en las siguientes capas:
• Manejadores de interrupción.
• Manejadores de dispositivos o drivers.
•Software de EIS independiente de los dispositivos. Este software está formado por la parte de alto nivel de los manejadores, el gestor de cache, el gestor de bloques y el servidor de archivos.
• Interfaz del sistema operativo. Llamadas al sistema que usan las aplicaciones de usuario.
El sistema operativo estructura el software de gestión de E/S de esta forma para ofrecer a los usuarios una serie de servicios de E/S independientes de los dispositivos. Esta independencia implica que deben emplearse los mismos servicios y operaciones de E/S para leer datos de un disquete, de un disco duro, de un CD-ROM o de un teclado.
Manejadores de interrupción
Los manejadores de interrupción se encargan de tratar las interrupciones que generan los controla dores de dispositivos una vez que éstos están listos para la transferencia de datos o bien han leído o escrito los datos de memoria principal en caso de acceso directo a memoria. Para tratar dicha interrupción se ejecuta el correspondiente manejador de interrupción cuyo efecto es el de salvar los registros, comunicar el evento al manejador del dispositivo y restaurar la ejecución de un proceso (que no tiene por qué ser el interrumpido).
Los manejadores de interrupción suelen hacer algo más que comunicar el evento al manejador de dispositivo. Cuando una interrupción ocurre muy frecuentemente, caso del reloj, o cuando la cantidad de información a transferir es muy pequeña, caso del teclado, sería muy costoso comunicar siempre el evento al manejador de dispositivo asociado.

Software de E/S independiente del dispositivo
La mayor parte del sistema de E/S es software independiente de dispositivo. Este nivel incluye el sistema de archivos y el de gestión de red, el gestor de bloques, la cache de bloques y una parte de los manejadores de dispositivo. La principal función de esta capa de software es ejecutar las funciones de E/S que son comunes a todos los dispositivos a través de una interfaz uniforme.
Internamente, en este nivel se proporciona acceso a nivel de bloques o caracteres, almacenamiento intermedio, gestión de los dispositivos, planificación de la E/S y control de errores.

Para optimizar la E/S y para armonizar las peticiones de usuario, que pueden ser de cualquier tamaño, con los bloques que maneja el sistema de archivos, el software de E/S proporciona almacenamiento intermedio en memoria del sistema operativo. Esta facilidad se usa para tres cosas:

• Optimizar la E/S evitando accesos a los dispositivos.
• Ocultar las diferencias de velocidad con que cada dispositivo y usuario manejan los datos.
• Facilitar la implementación de la semántica de compartición, al existir una copia única de los datos en memoria.

El sistema de E/S mantiene buffers en distintos componentes. Por ejemplo, en la parte del manejador del teclado independiente del dispositivo existe un buffer para almacenar los caracteres que teclea el usuario hasta que se pueden entregar a los niveles superiores. Si se usa una línea serie para leer datos de un sistema remoto y almacenarlos en el disco, se puede usar un buffer para guardar temporalmente los datos hasta que tengan una cierta entidad y sea rentable escribirlos a disco. Si se está leyendo o escribiendo un archivo, se guardan copias de los bloques en memoria para no tener que acceder al disco si se vuelven a leer.
La gestión de los dispositivos agrupa a su vez tres servicios: nombrado, protección y control de acceso.

El nombrado permite traducir los nombres de usuario a identificadores del sistema. Por ejemplo, en UNIX, cada dispositivo tiene un nombre (p. ej.: /dev/cdrom) que se traduce en un único identificador interno (o nodo-i), que a su vez se traduce en un único número de dispositivo principal (clase de dispositivo) y secundario (elemento de la clase).

Una de las funciones principales del sistema de E/S es la planificación de la E/S de los distintos componentes. Para ello se usan colas de peticiones para cada clase de dispositivo, de las que se extraen las peticiones de cada dispositivo en particular. Cada una de estas colas se ordena siguiendo una política de planificación, que puede ser distinta en cada nivel. Imagine el caso de LINUX, donde existe una cola global de peticiones de E/S, ordenadas en orden FIFO, para los discos instalados. Cuando un manejador de disco queda libre, busca la cola global para ver si hay peticiones para él y, si existen, las traslada a su cola de peticiones particular ordenadas según la política SCAN, por ejemplo. Este mecanismo permite optimizar la E/S al conceder a cada mecanismo la importancia que, ajuicio de los diseñadores del sistema operativo, se merece. En el caso de Windows NT, por ejemplo, el ratón es el dispositivo de E/S más prioritario del sistema. La razón que hay detrás de esta política es conseguir un sistema muy interactivo.


4.4 Operaciones de Entrada Salida


Tanto en la E/S programada como la basada en interrupciones, la UCP debe encargarse de la transferencia de datos una vez que sabe que hay datos disponibles en el controlador. Una mejora importante para incrementar la concurrencia entre la UCP y la E/S consiste en que el controlador del dispositivo se pueda encargar de efectuar la transferencia de datos, liberando de este trabajo a la UCP, e interrumpir a la UCP sólo cuando haya terminado la operación completa de EIS. Esta técnica se denomina acceso directo a memoria (DMA, Direct Memory Access).

Cuando se utiliza acceso directo a memoria, es el controlador el que se encarga directamente de transferir los datos entre el periférico y la memoria principal, sin requerir intervención alguna por parte del procesador. Esta técnica funciona de la siguiente manera: cuando el procesador desea que se imprima un bloque de datos, envía una orden al controlador indicándole la siguiente información:
• Tipo de operación: lectura o escritura.
• Periférico involucrado en la operación.
• La dirección de memoria desde la que se va a leer o a la que va a escribir directamente con el controlador de dispositivo (dirección).
• El número de bytes a transferir (contador).
Donde el campo Operación corresponde al código de operación de las instrucciones máquina normales. Especifica la operación que debe realizar la CCW. La unidad de control decodifica este campo y envía las señales adecuadas de control al dispositivo. Existen varias operaciones, las más importantes son las siguientes:

Lectura: el canal transfiere a memoria principal un bloque de palabras de tamaño especificado en el campo nº de palabras, en orden ascendente de direcciones, empezando en la dirección especificada en el campo dirección del dato.
Escritura: el canal transfiere datos de memoria principal al dispositivo. Las palabras se transfieren en el mismo orden que en la operación de lectura.
Control: se utiliza esta orden para enviar instrucciones específicas al dispositivo de E/S, como rebobinar una cinta magnética, etc.
Bifurcación: cumple en el programa de canal la misma función que una instrucción de salto en un programa normal. El canal ejecuta las CCW en secuencia, salvo cuando aparece una CCW de este tipo, que utiliza el campo dirección del dato como la dirección de la siguiente CCW a ejecutar.
Flags: Los bits de este campo indican lo siguiente:
CC (Encadenamiento de comando): cuando este bit está a 1, indica al canal que la siguiente CCW especifica una nueva operación de E/S que debe realizarse con el mismo dispositivo. El canal ejecuta primero la operación de E/S especificada en la CCW que tiene a 1 el flag CC. Después ejecuta la siguiente sobre el mismo dispositivo. Desde el punto de vista del dispositivo, las dos operaciones resultantes de la primera y segunda CCW aparecen como dos comandos de E/S separados.

CD (Encadenamiento de datos): una CCW con el bit CD a 1, indica al canal que la siguiente CCW contiene una nueva dirección del dato y un nuevo nº de palabras. Éstos deben utilizarse para transferir un segundo bloque de datos hacia o desde el dispositivo de E/S, mediante la orden especificada por la CCW actual. Cuando el canal termina la transferencia de datos especificada en la CCW con el bit CD a 1, no corta la conexión con el dispositivo de E/S, continúa la transferencia utilizando la dirección y el nº de palabras de la siguiente CCW.
SKIP (Salto): este bit, cuando está a 1, hace que el programa de canal salte un número de palabras igual al especificado en el campo nº de palabras. Cuando se utiliza con la orden de lectura, este flag hace que los datos se lean del dispositivo sin que se transfieran a la memoria principal.

PCI (Interrupción controlada por programa): el canal produce una interrupción cuando ejecuta una CCW con el flag PCI a 1. Si esta CCW va precedida por otra CCW con encadenamiento de comandos, la interrupción se genera después de que hayan concluido todas las transferencias de datos.

Una vez emitida la orden, el procesador continúa realizando otro trabajo sin necesidad de transferir el bloque de datos. Es el propio controlador el que se encarga de transferir el bloque de datos del periférico a memoria. La transferencia se realiza palabra a palabra. Cuando el controlador ha completado la transferencia, genera una interrupción que activa la rutina de tratamiento correspondiente, de tal manera que se sepa que la operación ha concluido.
Utilizando acceso directo a memoria el procesador únicamente se ve involucrado al inicio y al final de la transferencia.

Los pasos a seguir en una operación de E/S con DMA son los siguientes:

1. Programación de la operación de E/S. Se indica al controlador la operación, los datos a transferir y la dirección de memoria sobre la que se efectuará la operación.
2. El controlador contesta aceptando la petición de E/S.
3. El controlador le ordena al dispositivo que lea (para operación de lectura) una cierta cantidad de datos desde una posición determinada del dispositivo a su memoria interna. 7.3.
4. Cuando los datos están listos, el controlador los copia a la posición de memoria que tiene en sus registros, incrementa dicha posición de memoria y decrementa el contador de datospendientes de transferir.
5. Los pasos 3 y 4 se repiten hasta que no quedan más datos por leer.
6. Cuando el registro de contador está a cero, el controlador interrumpe a la UCP para in dicar que la operación de DMA ha terminado.

Inicio y control de los programas de canal
Hemos visto como se utilizan los programas de canal para realizar operaciones de E/S. Estos programas residen en la memoria principal del computador y se ejecutan en el canal. Vamos a examinar ahora la forma en que la CPU inicia y supervisa las operaciones de E/S, es decir, el programa de canal. En el IBM S/370 existen cuatro instrucciones máquina que la CPU puede utilizar para estos fines. Son las siguientes:

START I/O Inicia una operación de E/S. El campo de dirección de la instrucción seemplea para especificar el canal y el dispositivo de E/S que participa en la operación.
HALT I/O Finaliza la operación del canal.
TEST CHANNEL Prueba el estado del canal.
TEST I/O Prueba el estado del canal, el subcanal y el dispositivo de E/S.
Una operación de E/S se inicia con la instrucción START I/O. La ubicación del programa de canal en la memoria principal viene definida en la palabra de dirección de canal (CAW: Channel A ddress word), que siempre está almacenada en la posición 72 de la memoria principal.

1 comentario: